Управление

В соответствии с международными стандартами ин­новация определяется как конечный результат инноваци­онной деятельности, получивший воплощение в виде нового или усовершенствованного продукта, внедренного на рын­ке, нового или усовершенствованного технологического процесса, используемого в практической деятельности, либо в новом подходе к социальным услугам Читайте полностью...


Проверка адекватности и средства верификации прогнозных моделей

(3.8)

Точность прогнозирования тем выше, чем меньше значения е или S соответственно. Совершенный прогноз достигается при e=S=0.

Одним из исследователей проблем экономического прогнозирова­ния, Г. Тейлом [10], предложен в качестве меры качества прогнозов коэф­фициент расхождения V (или коэффициент несоответствия), числителем которого является среднеквадратическая ошибка прогноза, а знаменатель равен квадратному корню из среднего квадрата реализации:

(3.9)

Если У=0, то прогноз абсолютно точен (случай «идеального» прогнозирования). Если F=l, то это означает, что прогноз близок к простой (и наивной) экстраполяции. Если У>1, то прогноз дает худший результат, чем предположение о неизменности тенденций исследуемого явления.

Коэффициент расхождения может быть использован при сопостав­лении качества прогнозов, получаемых на основе различных методов и моделей. В этом его несомненное достоинство. Величина V поддается разложению на составляющие (частные коэффициенты расхождения), харак­теризующие влияние ряда факторов (это достигается разложением числи­теля, представляющего собой средний квадрат ошибки прогноза).

В некоторых случаях более важное значение имеют распознающие способности моделей прогнозирования, особенно при краткосрочном про­гнозировании. Например, при прогнозировании выполнения месячных планов предприятий отрасли по особо учитываемой номенклатуре в начале месяца в первую очередь интерес представляет более точная оценка воз­можности выполнения плана, чем прогнозная информация о величине от­клонения от плана. В данном случае целесообразно использовать следую­щую меру точности прогнозирования:

(3.10)

где q - число подтвержденных прогнозов; р - число неподтвержденных прогнозов.

Если £~\, то имеет место случай «идеального» прогнозирования.

Таким образом, измерители точности прогнозирования по отноше­нию к инвариантности относительно линейной вариации делятся на инва­риантные и не инвариантные. Инвариантные измерители (S и коэффициен­ты парной корреляции), хотя и не позволяют сравнивать точность прогно­зирования различных процессов, могут использоваться для определения точности прогнозирования различных последовательностей прогнозных значений {Pi} при фиксированной последовательности {Ft}. Например, по­добная ситуация возникает при моделировании, когда необходимо выби­рать между несколькими моделями прогнозирования, генерирующими со­ответствующие последовательности {Ft}. Инвариантные измерители могут быть проверены на статистическую значимость, то есть с определенной доверительной вероятностью конкретное значение измерителя является обоснованным. Однако особый интерес при построении моделей прогно­зирования имеет критерий Г. Тейла, так как позволяет определить, в чем состоит расхождение: имеет место дрейф среднего или дрейф дисперсии. С другой стороны, критерий У не является инвариантным, и есть возмож­ность оценивать применимость модели для совокупности различных про­гнозируемых процессов в целом. Например, для прогнозирования по одной модели поведения отдельных предприятий или отрасли в целом.

Средняя ошибка аппроксимации е является наиболее наглядным из­мерителем точности прогнозирования, что вместе с неинвариантностью приводит к тому, что требование к точности задач прогнозирования фор­мулируется по этому критерию.

Определить точность точечного прогноза по данным формулам можно при ретроспективности прогнозирования, когда апробируется мо­дель, а также для прогнозов с малым периодом упреждения {краткосроч­ные прогнозы).

Перейти на страницу: 1 2 3 4 5 6 7 8

 
Copyright © 2013 - 2014 - www.financenania.ru