Управление

В соответствии с международными стандартами ин­новация определяется как конечный результат инноваци­онной деятельности, получивший воплощение в виде нового или усовершенствованного продукта, внедренного на рын­ке, нового или усовершенствованного технологического процесса, используемого в практической деятельности, либо в новом подходе к социальным услугам Читайте полностью...


Фактографические методы прогнозирования

Как было ранее показано (см. п. 2.1.), фактографические методы про­гнозирования можно условно разделить на две большие группы: статисти­ческие и методы аналогий.

Статистические методы прогнозирования

Статистические методы изучены лучше всего, однако не являются единственно возможными. В ряде случаев прибегают к построению сцена­риев развития, морфологическому анализу, историческим аналогиям. Но­вым подходом к прогнозированию НТП является, в частности, «симптома­тическое» прогнозирование, суть которого заключается в выявлении «предвестников» будущих сдвигов в технике и технологии. Однако в прак­тике экономики преобладающими по-прежнему являются статистические методы (что связано с наличием инерционности). Немаловажным является и то, что статистические методы опираются на аппарат анализа, развитие и практика которого имеют достаточно длительную историю.

Процесс статистического прогнозирования распадается на 2 этапа:

• Индуктивный, заключающийся в обобщении данных, наблюдаемых за более или менее продолжительный период времени, и в представлении соответствующих статистических закономерностей в виде модели. Про­цесс построения модели включает: выбор формы уравнения, описывающе­го динамику или взаимосвязь явлений; оценивание его параметров.

• Дедуктивный — собственно прогноз. На этом этапе определяют ожидаемое значение прогнозируемого показателя.

Не всегда статистические методы используются в чистом виде. Часто их включают в виде важных элементов в комплексные методики, преду­сматривающие сочетание статистических методов с другими, например, экспертными оценками.

Статистические методы основаны на построении и анализе динами­ческих рядов, либо данных случайной выборки. К ним относятся методы прогнозной экстраполяции, корреляционный и регрессионный анализ. В группу статистических методов можно включить метод максимального правдоподобия и ассоциативные методы — имитационное моделирование и логический анализ.

Динамику исследуемых показателей развития хозяйственной систе­мы можно прогнозировать при помощи двух различных групп количест­венных методов: методов однопараметрического и многопараметрического прогнозирования. Общим для обеих групп методов является, прежде всего, то, что применяемые для параметрического прогнозирования математиче­ские функции, основываются на оценке измеряемых значений прошедшего периода (ретроспективы). Однопараметрическое прогнозирование базиру­ется на функциональной зависимости между прогнозируемым параметрам (переменной) и его прошлым значением, либо фактором времени.

ŷt+1=ſ(yt,yt-1,…,yt-n). (2.1)

При обработке таких прогнозов пользуются методом экстраполяции трендов, экспоненциальным сглаживанием или авторегрессией.

В основе многопараметрических прогнозов лежит предположение о причинной взаимосвязи между прогнозируемым параметром и нескольки­ми другими независимыми переменными:

ŷt+1=f(x), или; (2.2)

ŷt+1=f(x1, x2,…, xn).

Однопараметрические методы следует использовать при кратко­срочном (менее одного года) прогнозирования показателей, изменяющихся еженедельно или ежемесячно. Многопараметрические оправдывают себя для средне- и долгосрочного прогнозирования.

да нет да нет

Нет

Инструмент

прогноза

Скользящие и

экспоненциаль-

ные средние, ав-

торегрессия

да нет да

Рис.2.2.Схема выбора статистического метода прогнозирования

Выбор конкретного параметрического метода прогнозирования, кроме того, зависит от характера исходной статистической базы. В качест­ве исходных данных могут быть взяты выборочные наблюдения и динами­ческие ряды. В первом случае в качестве инструмента прогноза применя­ется регрессия. Значительно чаще, чем случайная выборка, информацион­ной базой для прогноза являются динамические ряды.

Перейти на страницу: 1 2 3 4 5 6

 
Copyright © 2013 - 2014 - www.financenania.ru