Управление

В соответствии с международными стандартами ин­новация определяется как конечный результат инноваци­онной деятельности, получивший воплощение в виде нового или усовершенствованного продукта, внедренного на рын­ке, нового или усовершенствованного технологического процесса, используемого в практической деятельности, либо в новом подходе к социальным услугам Читайте полностью...


Прогнозирование путём прямой экстраполяции.

Эти уравнения содержат постоянную интегрирования, кото­рую можно определить по заданному значению I, у

Каждая из перечисленных функций есть простая модель ди­намики размеров перевозок, описывающая траекторию экономи­ческого роста. Эти функции могут применяться и применяются для прогнозирования размеров перевозок на макроуровне, где присутствует большая инерционность и темпы прироста пример­но одинаковы. Это показано в работе, а также подтверж­дается нашими расчетами.

Инерционность развития в наибольшей мере присуща тем параметрам, которые характеризуют макроструктуру народного хозяйства и в меньшей мере проявляются на уровне отраслей, предприятий, отдельных участков производства. В свою очередь, инерционность параметров, принадлежащих одному уровню, но различным отраслям, предприятиям тоже различна.

В соответствии с вышесказанным инерционность элементов транспортной системы — министерство, автоуправление, авто­транспортное предприятие (объединение)- различна. Модели по­линомиального вида, полученные методом прямой экстраполя­ции, достаточно хорошо работающие на высшем уровне, могут быть не применимы для прогнозирования показателей низшего уровня.

Анализ рис. 9 показывает, что на уровне автотранспортного предприятия инерционность нам­ного меньше, а основная тенденция часто искажена случайной составляющей, поэтому для прог­нозирования на уровне АТП (объединения) необходимо при­менять функции специального ви-1а, учитывающие неравномер­ность темпа прироста в каждый момент времени, т. е.

Рассматриваемая обобщенно-экспоненциальная функция со­храняет экспоненциальный закон как главную компоненту ди­намики размеров перевозок, а компонента роста отражает переменность темпа прироста в каждый момент времени. Функ­цию (19) можно привести к виду:

Таким образом, рекомендуемый нами набор функций для краткосрочного прогнозирования на уровне АТП и управлений включает не только широко распространенные в практике эко­номического прогнозирования полиномы до третьей степени включительно и экспоненциальную функцию, но и две еще не применявшиеся формы связи (обобщенно-экспоненциальные функции). Параметры прогнозирующих функций рассчитывают­ся методом наименьших квадратов.

Согласно методу наименьших квадратов находится разность y-f, а сумма квадратов этих разностей S=будет функцией неизвестных «параметров. Так,

Определяют такую оценку параметров №, которая минимизирует 5(1Г), для чего определяется й81с!№ и приравнивается нулю, что дает си­стему т нормальных уравнений, которая должна быть решена относительно W

После нахождения неизвестных параметров прогнозных кривых необходимо оценить их близость к эмпирическим данным и выбрать наилучшую функцию. Критериями выбора являются: среднее абсолютное отклонение (|Л|); среднеквадратичное отклонение — о; коэффициент вариации — V; индекc корреляции Я.2; коэффициент Фишера Р. Все эти критерии предназна­чены для оценки качества аппроксимации, поэтому использование их выбора наилучшей прогнозирующей функции может привести к большим погрешно­стям. В работе применяется новый критерий — критерий минимума отклоне­ния в последней точке (МОПТ). Рассмотрим этот метод более подробно. Применение этого критерия основывается на следующем: качество прогнозов путем прямой экстраполяции тенденций улучшается, если за прогнозирующую функцию выбирается та, которая дает наименьшее отклонение в последней точке исследуемого временного ряда, т. е. задача определения не­известных параметров принимает вид

Перейти на страницу: 1 2 3 4 5 6

 
Copyright © 2013 - 2014 - www.financenania.ru